What about ChatGPT/CoPilot/DeepSeek/LLMs in general?

e 3 arguments on why you should use them, but after you
have passed this course (so NOT during this course)

* Point1
Modes of using LLMs

* Exploration mode

* You don’t know what to do, and you delegate this to the LLM 2>
not effective

* Acceleration mode

* You know how to program and what to do, and you use the LLM
to get there faster - very effective

* Take home message: you need to learn how to program before
benefitting from LLM!
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Powered by recent advances in code-generating models, Al assistants like Github Copilot promise to change
the face of programming forever. But what is this new face of programming? We present the first grounded
theory analysis of how programmers interact with Copilot, based on observing 20 participants—with a range of
prior experience using the assistant—as they solve diverse programming tasks across four languages. Our main
finding is that interactions with progr dal: in acceleration mode, the programmer
knows what to do next and uses Copilot to get there faster; in exploration mode, the programmer is unsure
how to proceed and uses Copilot to explore their options. Based on our theory, we provide recommendations
for improving the usability of future Al programming assistants.

istants are bi;
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1 INTRODUCTION

The dream of an “Al assistant” working alongside the programmer has captured our imagination
for several decades now, giving rise to a rich body of work from both the programming languages
[Ferdowsifard et al. 2020; Miltner et al. 2019; Ni et al. 2021; Raychev et al. 2014] and the machine
learning [Guo et al. 2021; Kalyan et al. 2018; Xu et al. 2020] communities. Thanks to recent
breakthroughs in large language models (LLMs) [Li et al. 2022; Vaswani et al. 2017] this dream
finally seems within reach. OpenAI's Codex model [Chen et al. 2021], which contains 12 billion
model parameters and is trained on 54 million software repositories on GitHub, is able to correctly
solve 30-70% of novel Python problems, while DeepMind’s AlphaCode [Li et al. 2022] ranked in the
top 54.3% among 5000 human programmers on the competitive programming platform Codeforces.
With this impressive pcrfnrmancc, large code-generating models are quickly escaping research
labs to power industrial programming assistant tools, such as Github Copilot [Friedman 2021].
The growing adoption of these tools gives rise to questions about the nature of Al-assisted
programming: What kinds of tasks do programmers need assistance with? How do programmers prefer
to communicate their intent to the tool? How do they validate the generated code to determine its
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What about ChatGPT/CoPilot/DeepSeek/LLMs in general? (cont.)

* Point 2 Q Fna et
LLMs cannot really help you for the . _
project/exam: this course is about teamwork, £ il The hardest part of building

communication, quality, and reliability = e software is not coding, it's

* LLMs cannot offer any of this. oo requirements

S Company Why replacing programmers with Al won’t be so easy.

* https://stackoverflow.blog/2023/12/29/the- © Reeses
hardest-part-of-building-software-is-not- b podess
coding-its-requirements/ > Newsitr

Stack Overflow for Teams
share, & collabor

[Ed. note: While we take some time to rest up over the holidays and prepare for next year, we are re-

publishing our top ten posts for the year. Please enjoy our favorite work this year and we’ll see you in
2024.]

With all the articles about just how amazing all the developments in Al have been, there’s plenty of
hand wringing around the possibility that we, as software developers, could soon be out of a job,
replaced by artificial intelligence. They imagine all the business execs and product researchers will
bypass most or all of their software developers and asking Al directly to build exactly what they think
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What about ChatGPT/CoPilot/DeepSeek/LLMs in general? (cont.

m

* Point 3
Comprehension vs writing. LLMs spit out code that,
unless understood in depth, should not be trusted.
Understanding the implications of code can be much
more difficult than writing the code yourself.

* https://medium.com/bits-and-behavior/large-
language-models-will-change-programming-a-little-
81445778d957

* https://dl.acm.org/doi/10.1145/3442188.3445922

ease. But that would be the hype talking.

ode is hard, the harder part for students (and really anyone) is
understanding how it executes and then making decisions about what it
should do differently.

use (because they intentionally hide what they do, capturing behavior only

Program comprehension is what makes APIs hard to

through poorly written natural language). It's what makes programming
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ABSTRACT

‘The past 3 years of work in NLP have been characterized by the
development and deployment of ever larger language models, es-
pecially for English. BERT, its variants, GPT-2/3, and others, most
recently Switch-C, have pushed the boundaries of the possible both
through architectural innovations and through sheer size. Using
these pretrained models and the methodalogy of fine-tuning them
for specific tasks, researchers have extended the state of the art
on a wide array of tasks as measured by leaderboards on specific
henchmarks for English. In this paper. we take a step back and ask:
How big is too big? What are the possible risks associated with this
technology and what paths are available for mitigating those risks?
‘We pravide recommendations including weighing the environmen-
tal and financial costs first, investing resources into curating and
carefully documenting datasets rather than ingesting everything on
the web, carrying out pre-develop exercises ¢ ing how
the planned approach fits into h and develog t goals and
supports stakeholder values, and encouraging research directions
beyond ever larger language models.
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1 INTRODUCTION

One of the biggest trends in natural language processing (NLP) has
heen the increasing size of language models (LMs) as measured
by the number of parameters and size of training data. Since 2018
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alone, we have seen the emergence of BERT and its variants [39,
70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most
recently Switch-C [43], with institutions seemingly competing to
produce ever larger LMs. While investigating properties of LMs and
how they change with size holds scientific interest, and large LMs
have shown improvements on various tasks (§2), we ask whether
enough thought has been put into the potential risks associated
with developing them and strategies to mitigate these risks.

‘We first consider environmental risks. Echoing a line of recent
waork outlining the environmental and financial costs of deep learn-
ing systems [129], we encourage the research community to priori-
tize these impacts. One way this can be done is by reporting costs
and evaluating works based on the amount of resources they con-
sume [57]. As we outline in §3, increasing the environmental and
financial costs of these models doubly punishes marginalized com-
munities that are least likely to benefit from the progress achieved
by large LMs and most likely to be harmed by negative environ-
mental consequences of its resource consumption. At the scale we
are discussing (outlined in §2), the first consideration should be the
environmental cost.

Just as environmental impact scales with model size, so does
the difficulty of understanding what is in the training data_ In §4,
we discuss how large datasets based on texts from the Internet
overrepresent hegemonic viewpoints and encode biases potentially
damaging to marginalized populations. In collecting ever larger
datasets we risk incurring documentation debt. We recommend
mitigating these risks by budgeting for curation and documentation
at the start of a project and only creating datasets as large as can
be sufficiently documented.

As argued by Bender and Koller [14], it is important to under-
stand the limitations of LMs and put their success in context. This
not only helps reduce hype which can mislead the public and re-
searchers themselves regarding the capabilities of these LMs, but
might encourage new research directions that do not necessarily
depend on having larger LMs. As we discuss in §5, LMs are not
performing natural language understanding (NLU), and only have
success in tasks that can be approached by manipulating linguis-
tic form [14]. Focusing on state-of-the-art results on leaderboards
without encouraging deeper understanding of the mechanism by
which they are achieved can cause misleading results as shown
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